
Generating Diverse Translations via Weighted Fine-tuning and
Hypotheses Filtering for the Duolingo STAPLE Task

Sweta Agrawal
Department of Computer Science

University of Maryland
sweagraw@cs.umd.edu

Marine Carpuat
Department of Computer Science

University of Maryland
marine@cs.umd.edu

Abstract
This paper describes the University of Mary-
land’s submission to the Duolingo Shared Task
on Simultaneous Translation And Paraphrase
for Language Education (STAPLE). Unlike the
standard machine translation task, STAPLE re-
quires generating a set of outputs for a given
input sequence, aiming to cover the space of
translations produced by language learners.
We adapt neural machine translation models to
this requirement by (a) generating n-best trans-
lation hypotheses from a model fine-tuned on
learner translations, oversampled to reflect the
distribution of learner responses, and (b) fil-
tering hypotheses using a feature-rich binary
classifier that directly optimizes a close ap-
proximation of the official evaluation metric.
Combination of systems that use these two
strategies achieves F1 scores of 53.9% and
52.5% on Vietnamese and Portuguese, respec-
tively ranking 2nd and 4th on the leaderboard.

1 Introduction

While machine translation (MT) typically produces
a single output for each input, scoring and gen-
eration for second language learning applications
might benefit from systems whose outputs bet-
ter capture the diversity of translations produced
by language learners. The Duolingo Simultane-
ous Translation And Paraphrase for Language Ed-
ucation (STAPLE) shared task (Mayhew et al.,
2020) provides a framework for developing and
testing such systems, grounded in real transla-
tions produced by English learners into five native
languages (Portuguese, Vietnamese, Hungarian,
Japanese, Korean). In this task, given an English
sentence prompt, systems are asked to produce a set
of translations for that prompt, and are scored based
on how well their outputs cover human-curated ac-
ceptable translations, weighted by the likelihood
that an English learner would respond with each
translation (Table 1).

Prompt is my explanation clear?

Output

minha explicação está clara? 0.267
minha explicação é clara? 0.161
a minha explicação está clara? 0.111
a minha explicação é clara? 0.088
minha explanação está clara? 0.057
está clara minha explicação? 0.044
minha explanação é clara? 0.039

Table 1: STAPLE data: given a prompt in English,
translation alternatives are weighted according to
Learner Response Frequency (LRF)

While the multiple translations can be viewed as
paraphrases, we propose to address the STAPLE
task primarily as a MT task to better understand
the strengths and weaknesses of neural MT archi-
tectures for generating multiple learner-relevant
translations. Given a Transformer model for the
language pair of interest, we use beam search to
generate n-best translation candidates. However,
since n-best lists are known to lack diversity, we
propose to generate hypotheses that better match
the requirements of the STAPLE task via:

1. Frequency-Aware n-Best Lists: We encour-
age hypotheses to reflect the diversity and fre-
quency of learner responses by fine-tuning
models on STAPLE data, oversampling trans-
lation options to reflect learner preferences.

2. Hypothesis Filtering: We filter the resulting
n-best lists using a binary classifier which
identifies good translations that are likely to
be produced by a learner.

Controlled experiments and analysis show the
benefits of both strategies. Our final submission
which includes both techniques achieves F1 scores
of 53.9% and 52.5% for en-vi and en-pt respec-



tively, reaching a rank of 2nd and 4th on the leader-
board, only 2 points below the top scoring sys-
tem. For completeness, we also submitted systems
for the remaining language pairs using Frequency-
Aware n-best lists: our system ranked 2nd for
Japanese and 3rd for Korean and Hungarian.

2 Background

Unlike in the STAPLE task, recent attempts at gen-
erating multiple translations for a single source
have targeted output variability along specific
stylistic dimensions (Sennrich et al., 2016b; Ra-
binovich et al., 2016; Niu et al., 2018; Agrawal and
Carpuat, 2019) or produce diverse outputs without
a specific use case (Kikuchi et al., 2016; Shu et al.,
2019). The techniques used can be divided in three
categories: (a) constrain the decoding process to
generate diverse candidates (Li and Jurafsky, 2016;
Li et al., 2015; Cho, 2016); (b) optimize via a di-
versity promoting loss function (Li et al., 2015); (c)
expose the model to different translation candidates
with side-constraints (Rabinovich et al., 2016; Sen-
nrich et al., 2016a; Niu et al., 2018; Agrawal and
Carpuat, 2019; Shu et al., 2019) or without (Shen
et al., 2019). Since it is unclear what dimensions
of variations are captured in the STAPLE trans-
lation, we focus instead on improving n-best lists
generated by a standard neural MT model.

Source texts with multiple references have
mostly been used to evaluate rather than train MT
systems (Papineni et al., 2002; Banerjee and Lavie,
2005; Qin and Specia, 2015). Evaluation sets with
4 or 5 references have been converted to single-
reference training samples (Zheng et al., 2018) to
improve MT training, but reference translations
vary in arbitrary ways and often exhibit poor diver-
sity, mostly limited to translationese effects. The
STAPLE data presents an opportunity to explore
multiple translations generated in a more compre-
hensive fashion.

3 Approach

3.1 Frequency-Aware Hypotheses Generation

While neural MT systems can generate multi-
ple translation candidates per source using beam
search, the n-best translations often lack diversity.
One issue is that systems are trained on single-
translation training samples. We propose to tailor
MT to the STAPLE task by fine-tuning models on
LRF-weighted multi-reference samples to obtain

more diverse translations and a ranking that better
reflect learner preferences.

Given the STAPLE data for a language pair,
where the i-th training example, (ei,Fi,Wi) in-
cludes a source sentence in English, a reference set
Fi = {f1i , f2i , ..., fKi } of K translations and corre-
sponding LRF weights Wi = {w1

i ,w
2
i , ...,w

K
i },

we create MT training samples by copying the
translation pair (ei, f

j
i ), w

j
i × O times.1 Given

model parameters θ, this yields a weighted cross-
entropy loss:

Llrf (θ) =
M∑
i=1

K∑
j=1

(wj
i ×O) logPr(f ji |ei; θ) (1)

3.2 Hypothesis Filtering as Binary
Classification

Even when informed by STAPLE data and LRF
scores, n-best lists might include translations that
are not in the reference set, due to translation errors
or selecting paraphrases that do not match language
learners’ preferences. We design a binary classi-
fier that further filters the n-best lists by predicting
for each hypothesis whether or not it should be in-
cluded in the final set. This lets us define features
based on the complete prompt and hypothesis se-
quence pairs, while the MT model generates the
hypothesis incrementally.

Let D = {(ei, f̂1i , f̂2i , ..., f̂Ni )}M1 represent the
n-best list generated via beam search for all the
source prompts in the training dataset: ei corre-
sponds to the i-th source prompt and f̂ ji corre-
sponds to the j-th candidate hypothesis extracted
via beam search. xi

j represents the feature vector
extracted from the source (ei) and j-th candidate
hypothesis (̂f ji ) and yj

i is a binary label indicative
of whether the candidate hypothesis, f̂ ji , is found
in the gold standard data. The classification model
f : X → R maps the feature vector to a real value,
where, f is a two-layer Neural Network (NN) to
enable learning feature combinations.

Features We aim to capture the quality of a
source-hypothesis pair using multiple sentence-
level features:

• Length features |f̂ |, |e|, |f̂ |
|e| ,

|e|
|f̂ |

might indicate
mismatches between source and target content.

• Word alignment features have proved use-
ful to identify semantic divergences in bitext
1We set O = 1000 in practice.



(Munteanu and Marcu, 2005; Vyas et al., 2018).
We use the Forward and Reverse Alignment
score, the count of unaligned words for source
and target, and the top three largest fertilities for
source and target.

• Scores from various MT models as often done
when reranking n-best lists (Cherry and Foster,
2012; Neubig et al., 2015; Hassan et al., 2018)
including a left-to-right model, a right-to-left
model, and a target-to-source model, which pro-
vide different views of the example and might
better estimate the adequacy of the translation
than the original MT model score.

• Target 5-gram language model score to estimate
the fluency of the hypothesis.

Loss We optimize a Soft Macro-F1 objective
(Hsieh et al., 2018) function to approximate the
official evaluation metric.2 The true positive (tp),
false positive(fp), and true negative (tn) rate for
each source prompt ei are estimated as:

tpei =
N∑
t=1

ŷi × yi

fpei =
N∑
t=1

ŷi × (1− yi)

tnei =
N∑
t=1

(1− ŷi)× yi

Then, the precision, recall, F1 for a source ei, and
the loss are defined as:

Pei =
tpei

tpei + fpei + ε

Rei =
tpei

tpei + fnei + ε

F1Macroei =
2× Pei × Rei

Pei +Rei + ε

Loss =
M∑
i=1

(1− F1Macroei)

4 Experiment Settings

4.1 Data
STAPLE Data The shared task provides English
source prompts, associated with high-coverage sets

2Preliminary experiments showed that a LRF-weighted
version of this loss resulted in unstable training and inconsis-
tent results depending on initialization.

Figure 1: Average of the top-1, top-5, mean and me-
dian LRF values across source prompts: the LRF distri-
bution is more uniform for languages with many more
references per prompt (e.g. en-ja).

of plausible translations in five other languages.
These translations are weighted and ranked accord-
ing to LRF scores indicating which translations are
more likely. About 3000 prompts per language are
available (see Table 2 for details) and the number
of reference translations available per prompt vary
across languages (mean: 174.2, variance: 116). Fig-
ure 1 illustrates the differences in LRF distributions
across languages: for languages with many refer-
ences per prompt (e.g. en-ja, en-ko), the gap be-
tween the top-1 and the mean LRF value is small,
indicating an almost uniform distribution. Aver-
age top-1 LRF scores also vary across languages
(e.g en-vi: 0.25, en-ja: 0.05) depending upon the
number of references available per prompt.

For system development, we divide the STAPLE
dataset into train, development and test datasets
using 72%, 8%, and 20% of source prompts re-
spectively. We refer to these subsets as STAPLE
train, internal dev and internal test. Note that the
last two differ from the official blind development
and test sets available to participants on codalab.

Other Bitexts We use bitext from OpenSubti-
tles (Tiedemann, 2012) and Tatoeba (Tiedemann,
2012) as described in Table 3. The Tatoeba corpus
provides multiple reference translations for some
sources (with 2 translation per source on average),
but unlike in the STAPLE data, these translations
are not weighted by frequency of usage.

Preprocessing All datasets are pre-processed us-
ing Moses tools for normalization, tokenization
and lowercasing. We further segment tokens into
subwords using a joint source-target Byte Pair En-
coding (Sennrich et al., 2016c) model with 32, 000



Language Source Target T/S
Train Dev Test Types Tokens Train Dev Test Types Tokens

en-pt 2.8K 300 800 2.3K 3.8M 380K 42K 104K 8.7K 4M 131
en-vi 2.5K 280 700 2.3K 950K 142K 14K 38K 1.7K 1.3M 56
en-ja 1.8K 200 500 1.3K 3.8M 600K 65K 166K 4K 6.8M 342
en-ko 1.8K 200 500 1.3K 3M 500K 57K 137K 17K 2.6M 280
en-hu 2.8K 320 800 1.5K 1.1M 182K 21K 47K 11K 1M 62

Table 2: STAPLE data statistics: segments in our train/dev/test split, overall vocabulary statistics and average
translations per source prompt (T/S).

Language OpenSubtitles Tatoeba

en-pt 47.2M 196K
en-vi 3M 5.3K
en-ja 1.8M 200K
en-ko 1.2M 2.7K
en-hu 34.5M 102K

Table 3: Additional bitext used for training and fine-
tuning MT models

operations. For Japanese, we use kytea 3 toolkit for
word tokenization.

4.2 MT configurations

Model Architecture We use the Transformer
model implemented in the Sockeye toolkit4 as a
baseline MT system. Both encoder and decoder
are 6-layer Transformer models with model size
of 1, 024, feed-forward network size of 4, 096, and
16 attention heads. We adopt label smoothing and
weight tying. We tie the output weight matrix with
the target embeddings. We use Adam optimizer
with initial learning rate of 0.0002.

Experimental Conditions We train several
models with the above configuration:

• OpenSubs a baseline model trained and vali-
dated on the OpenSubtitles bitext.

• Unweighted builds on the baseline by fine-
tuning on multi-reference samples includ-
ing the Tatoeba bitext and STAPLE train.
We create one training sample per source-
reference pair, and the resulting samples are
not weighted. We use the internal dev set (1-
best reference only) as a validation set.

3https://github.com/neubig/kytea
4https://github.com/awslabs/sockeye

• Frequency-Aware is fine-tuned as the un-
weighted model except that STAPLE train is
oversampled as described in § 3.1.

We generate n-best list of translations for various
models by running beam search with a beam size
corresponding to the desired n.

4.3 Filtering configurations

Classifier The 2-layer feed-forward NN has 5
hidden units and 2 output units. It is trained with
the Adam optimizer with an initial learning rate of
0.001 and runs for 2000 epochs on the internal dev
set. The best model is selected based on internal
test set performance. We consider two losses: the
soft macro F1 loss which approximates the official
evaluation metric (§ 3.2) and the standard cross-
entropy loss as a baseline.

Reranking Baseline We compare our NN based
classifer with a standard MT n-best list reranker
trained on the internal dev set. We use the n-best
batch MIRA ranker (Cherry and Foster, 2012) in-
cluded in Moses. A threshold to filter candidates
in the reranked list is selected by maximizing the
Weighted Macro F1 on the internal dev dataset.

Features We use eflomal 5 trained on the Open-
subtitles dataset to obtain word alignment between
source and translation hypotheses. The language
model is trained with the kenlm (Heafield, 2011)
toolkit with default hyper-parameters6 on the target
side of the Opensubtitles and the STAPLE dataset.
The Right-to-left and Target-to-source MT models
were trained on OpenSubtitles (same configuration
as in § 4.2).

5https://github.com/robertostling/
eflomal

6https://github.com/kpu/kenlm

https://github.com/neubig/kytea
https://github.com/awslabs/sockeye
https://github.com/robertostling/eflomal
https://github.com/robertostling/eflomal
https://github.com/kpu/kenlm


5 Evaluation

We evaluate the lowercased detokenized output of
the systems on our internal test dataset using:

Weighted Macro F1 This is the official scoring
metric which quantifies how the set of system out-
puts covers the human-curated acceptable transla-
tions, weighted by the LRF of each translation. It is
defined as the harmonic mean of unweighted pre-
cision (P) and weighted recall (WR) calculated for
each prompt ei, and averaged over all the prompts
in the corpus. Specifically, using the same nota-
tion as introduced in § 3.1, for each translation Ti

generated by the MT model, we have:

WTPei =
∑
t∈Ti

∑
fj
i ∈Fi

1[t == f ji ]w
j
i

WFNei =
∑
fj
i 6∈Ti

wj
i

WRei =
WTPei

WTPei +WFNei

The weighted Macro F1 (WMF1) is then given
by:

WMF1ei =
2× Pei ×WRei

Pei +WRei

WMF1 =
1

M

M∑
i

WMF1ei

BLEU@1 We also report the translation quality
of the 1-best neural MT output compared against
the highest LRF reference translation using the
standard BLEU metric (Papineni et al., 2002).

6 Experiment Results

6.1 Impact of Frequency-Aware Fine-Tuning
Table 4 summarizes the evaluation of n-best lists
obtained with our neural MT systems.

Baselines We confirm that the neural MT con-
figuration is sound by comparing our neural MT
baseline to the provided AWS system. Our baseline
(“OpenSubs”) improves the BLEU@1 score by 2
points for en-pt, and remains 6 points lower for en-
vi, as can be expected given the smaller size of the
OpenSubtitles training set. However, the “Open-
Subs” n-best lists improve over the AWS baseline
according to the official task metric (WMF1), es-
tablishing that this system is a good starting point
for fine-tuning.

Fine-Tuning The Frequency-Aware n-best hy-
potheses consistently yield the best Weighted Re-
call and Weighted Macro-F1 scores for all lan-
guages. The improvement in recall and therefore
F1 score is largest for en-ja and en-ko which
have larger translation reference sets (Table 4).
Frequency-Aware oversampling also improves pre-
cision over the Unweighted model for all but one
language (en-pt). The impact on the auxiliary
BLEU@1 metric is less consistent: the Frequency-
Aware system achieves the best BLEU@1 in 3
out of 5 languages, but outperforms the OpenSubs
baseline in 4 out of 5. BLEU@1 drops when fine-
tuning on all the samples without weighting (Un-
weighted) which we attribute to the increased un-
certainty during training as the model is exposed
to many different translations for the same source
English text.

Overall, these results show the benefits of fine-
tuning on task-relevant data and shows that in-
corporating LRF weights via oversampling im-
proves the ranking of n-best hypotheses. This is
further illustrated in Table 5, which shows the top
10 Vietnamese translations for two randomly sam-
pled source prompts: the Frequency-Aware n-best
list yields Weighted Recall of 81% at a Precision
of 60% and 76% at a Precision of 100% for the
two source prompts respectively, illustrating that
the model generates high-quality candidates that
cover reference translations well, but not perfectly.

N-Best List Quality How well do n-best trans-
lations cover the space of reference learner trans-
lations? Figure 2 shows the impact of increasing
the decoding beam (and resulting n-best list size)
from 10 to 500 for the Frequency-Aware model.
For en-pt, while weighted recall increases up to
66%, the drop in precision hurts the weighted F1
score. The oracle F1 score, which represents the
Weighted Macro F1 at a Precision of 100%, also
increases gradually, reaching a score of 76%. This
suggests that the raw n-best lists contain many use-
ful translation candidates but need to be filtered
down to better match translations preferred by lan-
guage learners.

6.2 Impact of Hypothesis Filtering
Due to time constraints, we explore the impact of
hypothesis filtering only for en-pt and en-vi.

Filtering consistently improves Precision and
Weighted Macro F1 (Table 6). The binary clas-
sifier that optimizes Soft Macro-F1 performs best,



Language Method BLEU@1 n-best size P WR WMF1

en-pt

AWS 68.9 1 86.67 14.47 21.60
OpenSubs 70.9 10 49.66 39.18 37.39
Unweighted 61.5 10 72.69 40.58 46.11
Frequency-Aware 76.6 10 67.31 44.34 47.4

en-vi

AWS 61.4 1 65.09 13.32 19.57
OpenSubs 55.2 10 29.10 31.38 25.76
Unweighted 49.8 10 56.43 42.91 41.00
Frequency-Aware 71.9 10 61.61 54.37 51.87

en-ja

AWS 50.6 1 67.68 2.18 4.01
OpenSubs 32.7 50 2.94 3.47 2.52
Unweighted 30.1 50 45.71 21.21 24.88
Frequency-Aware 42.4 50 47.29 22.83 26.57

en-hu

AWS 63.4 1 83.70 18.12 27.12
OpenSubs 64.4 10 41.51 42.6 37.83
Unweighted 26.2 10 47.11 29.7 31.62
Frequency-Aware 51.4 10 52.22 41.05 41.69

en-ko

AWS 27.9 1 60.68 2.26 4.11
OpenSubs 9.2 50 12.53 7.41 7.20
Unweighted 14.8 50 33.82 18.8 19.78
Frequency-Aware 30.2 50 35.31 20.92 21.94

Table 4: Frequency-Aware systems outperform both OpenSubs and Unweighted models for all languages. The size
of the n-best list for each model was selected based on the WMF1 score on the internal test set.

as the loss leads to a better balance between Preci-
sion and Weighted Recall than cross-entropy. The
classifier outperforms the MIRA reranker. Since
the reranker is trained to maximize BLEU@1, it
tends to prefer candidates that are lexically similar
to the top reference translation and misses some of
the more diverse learner translations. This confirms
the benefits of framing the selection of candidate
hypothesis as binary classification.

Ablation Experiments show that the MT scores
are the most useful of the features used, as they
capture not only the generation probability of a
candidate hypothesis but estimate adequacy via
the Target-to-source neural MT model (Table 8).
Length features help precision but not recall, while
the alignment and language model scores have lit-
tle impact overall. This suggests that the classifier
could benefit from improved feature design and
selection in future work.

6.3 Analysis of Translation Diversity
How diverse are the translations returned by vari-
ous system configurations? Following Zhang et al.
(2018), we quantify diversity using the entropy of

k-gram distributions within a translation set:

Ent-k (V) = − 1∑
w F (w)

∑
w∈V

F (w) log
F (w)∑
w F (w)

where V is the set of all k-grams that appear in the
translation set, and F (w) denotes the frequency of
w in the translations. The higher the Ent-k score,
the greater the diversity.

Fine-tuned models improve the diversity of 10-
best lists compared to the “OpenSubs” baseline for
both en-vi and en-pt (Table 9). Overall filtering
bridges 40% and 25% of the gap between baseline
and reference learner translations for en-pt and en-
vi respectively.

6.4 System Combinations
A manual examination of translation sets returned
by different models suggest that they make comple-
mentary errors. We therefore consider combining
system outputs by taking the union of the set of
translations they return. We evaluate the following
combinations (Table 7):

C1 Frequency-aware (10-best) + Unweighted (10-
best)



Figure 2: Increasing the size of n-best list with the Frequency-Aware system improves the coverage of learner
translations for en-pt and en-vi. Oracle F1 is the Weighted Macro F1 at a Precision of 100% and represents the
upper bound on WMF1 that can be achieved for a given n-best list.

Input: We live near the border. LRF

chúng tôi sống gần biên giới. 0.250
chúng tôi sống ở gần biên giới. 0.053
chúng tôi sống gần đường biên giới. 0.267
chúng tôi sống bên cạnh biên giới. 0.018
chúng tôi sống ở cạnh biên giới. 0.013
chúng ta sống gần biên giới. 0.036
chúng tôi sống cạnh biên giới. 0.061
chúng tôi sống ở bên cạnh biên giới. 0.004
chúng tôi sống ở gần đường biên giới. 0.052
chúng ta sống ở gần biên giới. 0.004
Precision: 100%, Weighted Recall: 76%

Input: My family lives in the south. LRF

gia đình tôi sống ở miền nam. 0.285
gia đình của tôi sống ở miền nam. 0.134
gia đình tôi sống ở phương nam. 0.061
gia đình của tôi sống ở phương nam. 0.019
gia đình tôi sống ở phía nam. 0.208
gia đình của tôi sống ở phía nam. 0.099
nhà của tôi sống ở miền nam. -
nhà tôi sống ở miền nam. -
nhà của tôi sống ở phương nam. -
gia đình tôi sống ở nam. -
Precision: 60%, Weighted Recall: 81%

Table 5: Frequency-Aware 10-best Vietnamese output
for two randomly selected English prompts. LRF values
are given for translations found in the reference set.

C2 Frequency-aware (10-best) + Frequency-
aware (filtered 50-best)

C3 Unweighted (10-best) + Unweighted (filtered
50-best)

C4 Union of all of the above.

For en-pt and en-vi, it helps to combine higher
precision unfiltered 10-best lists, and higher re-
call filtered 50-best lists. For en-pt, the union of
all outputs (C4) performs best overall. Recall in-
creases when combining the Frequency-Aware and
the Unweighted model (C1) compared to individ-
ual lists (Unweighted: +1.6, Frequency-Aware: +2)
without compromising Precision. Similar trends
are observed when adding the filtered 50-best list
to unfiltered 10-best lists (C2: +2.2, C3: +4.8).
For en-vi, a different combination (C2) yields the
best result, perhaps due to the smaller set of ref-
erence translations per source prompt (en-vi: 56,
en-pt: 131) and high Precision of the “Unweighted”
model for en-pt.

7 Submitted Systems

We tested our systems on the official blind devel-
opment set to select the best performing models
for final evaluation on the test set. For Portuguese
and Vietnamese, our official submissions include
frequency-aware hypothesis generation and hypoth-
esis filtering:

en-vi C2: Frequency-aware (10-best) + Frequency-
aware (filtered 50-best)



Method en-vi en-pt
P WR WMF1 K P WR WMF1 K

No filtering 31.00 70.31 37.69 50 44.75 57.21 42.84 50
Reranker 69.71 46.85 50.67 9 67.44 41.82 45.51 14
Classifier with CE loss 69.70 47.74 48.77 12 69.26 42.70 46.60 10
Classifier with F1 loss 65.15 55.21 53.69 12 67.81 45.71 48.68 13

Oracle 100 70.31 77.90 15 100 70.31 66.9 16

Table 6: Filtering n-best lists consistently improves WMF1 and substantially reduces the size of the output set (K)

Method en-pt en-vi
P R WR WMF1 P R WR WMF1

Unweighted (10-best) 72.69 5.53 40.58 46.11 56.43 10.32 42.19 41.00
Unweighted (filtered 50-best) 67.81 9.68 45.71 48.17 63.14 15.23 54.35 51.48
Frequency-Aware (10-best) 67.31 5.07 44.34 47.40 61.61 11.28 54.37 51.87
Frequency-Aware (filtered 50-best) 64.33 6.40 36.94 41.44 65.15 15.33 55.21 53.69

C1 65.09 7.13 47.52 49.31 55.04 14.82 57.57 50.73
C2 64.33 7.30 48.67 48.81 60.41 16.07 60.19 53.57
C3 66.41 10.32 50.18 50.17 56.19 15.93 54.89 48.05
C4 59.76 11.60 53.56 50.79 53.75 18.31 61.04 50.78

Table 7: Combination of unfiltered 10-best lists (with better precision) and filtered 50-best lists (with better recall)
improves Weighted Macro F1. See § 6.4 for details on combinations.

Features P R WR WMF1
All 63.71 15.97 55.91 54.04
- LM score 65.10 15.35 55.62 53.92
- Alignment 65.21 15.27 55.08 53.86
- Length 58.44 16.49 55.98 52.53
- MT Scores 43.77 10.88 31.02 28.06

Oracle 100 28.28 70.31 77.90

Table 8: Impact of dropping one feature type (§ 3.2) at
a time from the “All” configuration for en-vi classifier.

Translations en-pt en-vi
Ent-4 n Ent-4 n

OpenSubs 2.34 10 2.53 10
Unweighted 2.60 10 2.65 10
Frequency-Aware 2.59 10 2.67 10
Filtered 2.95 13 2.71 11

Reference 3.93 131 3.23 56

Table 9: Diversity in translation sets: Filtered sets are
more diverse, bridging 40% of the gap between base-
line and reference translations for en-pt.

en-pt C4: Frequency-aware (10-best) + Frequency-
aware (filtered 50-best) + Unweighted (10-
best) + Unweighted (filtered 50-best)

We did not build hypothesis filtering models for
the other languages, and submitted systems based
only on unfiltered models:

en-ja Frequency-aware (50-best) + Unweighted (50-
best)

en-hu Frequency-aware (10-best) + Unweighted (10-
best)

en-ko Frequency-aware (50-best) + Unweighted (50-
best)

Table 10 and 11 compares our submissions to
baselines, as well as top and median submissions
across participants, for all the languages. On our
focus languages (en-pt and en-vi), where systems
benefitted from both frequency-aware generation
and filtering models, our submissions obtain a
Weighted Macro F1 score of 0.539 for en-vi and
0.525 for en-pt on the official test set, achieving
a rank of 2nd and 4th on the leader-board, within
2% of the top performing submission. On the other
language pairs, where our submissions did not use



any filtering, Weighted Macro F1 outperform the
baselines and median submission consistently. In-
terestingly on the en-ja task, our system ranks sec-
ond amongst all the submissions despite not using
any filtering.

Method en-vi en-pt en-ja en-hu en-ko
AWS 0.210 0.211 0.042 0.298 0.040
Fairseq 0.267 0.151 0.031 0.130 0.054
Median 0.382 0.451 0.214 0.298 0.047
Top 0.547 0.557 0.316 0.598 0.413

Ours 0.537 0.538 0.283 0.492 0.254

Table 10: Excerpt from official results: weighted Macro
F1 on the STAPLE dev set

Method en-vi en-pt en-ja en-hu en-ko
AWS 0.198 0.213 0.043 0.281 0.041
Fairseq 0.254 0.136 0.033 0.124 0.049
Median 0.377 0.436 0.239 0.452 0.230
Top 0.558 0.552 0.318 0.555 0.404

Ours 0.539 0.525 0.294 0.469 0.255
Rank 2nd 4th 2nd 3rd 3rd

Table 11: Excerpt from official results: weighted Macro
F1 on the STAPLE test set

8 Conclusion

We proposed two strategies to obtain multiple out-
puts that mimic translations by produced by lan-
guage learners from a standard neural MT model.
Our experiments showed that (1) finetuning MT
models using all reference translations and their
weight yields more diverse n-best hypotheses that
better reflect learner preferences, and (2) filter-
ing these n-best lists using a feature-rich classi-
fier trained to maximize an approximation of the
STAPLE evaluation metric yields further improve-
ments. Combinations of systems that use these two
strategies approach the top scoring submission in
the official evaluation.

While these results suggest that some degree of
output diversity can be achieved with little change
to core neural MT models, oracle scores obtained
with unfiltered n-best lists indicate that better mod-
eling the space of learner translations might benefit
both candidate generation and the filtering model
in future work.
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