
Exploring Model Consensus to Generate Translation Paraphrases

Zhenhao Li1, Marina Fomicheva2, Lucia Specia12

1 Department of Computing, Imperial College London
2 Department of Computer Science, University of Sheffield
{zhenhao.li18, l.specia}@imperial.ac.uk

{m.fomicheva}@sheffield.ac.uk

Abstract

This paper describes our submission to the
2020 Duolingo Shared Task on Simultaneous
Translation And Paraphrase for Language Ed-
ucation (STAPLE). This task focuses on im-
proving the ability of neural MT systems to
generate diverse translations. Our submis-
sion explores various methods, including N-
best translation, Monte Carlo dropout, Diverse
Beam Search, Mixture of Experts, Ensem-
bling, and Lexical Substitution. Our main sub-
mission is based on the integration of mul-
tiple translations from multiple methods us-
ing Consensus Voting. Experiments show that
the proposed approach achieves a considerable
degree of diversity without introducing noisy
translations. Our final submission1 achieves
0.5510 weighted F1 score on the blind test set
for the English-Portuguese track.

1 Introduction

Machine Translation (MT) systems are typically
used to produce a single output for a given source
sentence, whereas in human translation the same
source sentence can often be translated in various
different ways while still preserving its meaning.

In the 2020 Duolingo Shared Task on Simultane-
ous Translation And Paraphrase for Language Edu-
cation (STAPLE) (Mayhew et al., 2020), participat-
ing MT systems are evaluated using multiple refer-
ence translations to measure their ability to gener-
ate diverse, yet high quality translations. For that,
a new dataset with multiple human translations for
each source sentence is provided. These human
translations were produced by language learners
as part of a translation exercise on the Duolingo
platform2 where they were asked to translate sen-
tences from the language they were learning (e.g.
English) to their native language. Each translation

1https://github.com/Nickeilf/STAPLE20
2https://www.duolingo.com

in the dataset is assigned a weight based on the
learner response frequency. Table 1 gives an ex-
ample of the weighted translations in the dataset
for English-Portuguese. The STAPLE dataset in-
cludes five language pairs: English to Portuguese,
Hungarian, Japanese, Korean, and Vietnamese. In
the shared task, we only participated in English-
Portuguese (En-Pt) track.

Original is my explanation clear?
Translation minha explicação está clara? | 0.2673

minha explicação é clara? | 0.1616
a minha explicação está clara? | 0.1111
a minha explicação é clara? | 0.0878
minha explanação está clara? | 0.0572
está clara minha explicação? | 0.0443
minha explanação é clara? | 0.0392
...

Table 1: An example of weighted translations in the
STAPLE dataset for English-Portuguese.

In this paper, we experiment with various meth-
ods to improve the diversity of translations, while
preserving their quality. We show that simply by
generating N-best translations with larger beam
size, we can already achieve a considerable degree
of diversity. Our final submission is based on the
integration of multiple translations from various
methods, namely N-best translation, Monte Carlo
dropout, Mixture of Experts, Ensembling, and Lex-
ical Substitution, through a consensus voting mech-
anism. It achieves 0.5510 weighted F1 score on the
official blind test set.

This paper is structured as follows: Section 2
describes the methods we used in our experiments.
Section 3 introduces the experimental settings, in-
cluding data preparation, model hyperparameters,
and the evaluation procedure. Section 4 describes
the results and analysis. Section 5 presents our
three official submissions to STAPLE blind test set.
Finally, Section 6 summarises our submission to
the shared task and our contributions.

https://github.com/Nickeilf/STAPLE20
https://www.duolingo.com


2 Methods

In what follows we describe the methods used
in our experiments, including N-best translation,
Monte Carlo dropout, Diverse Beam Search, Mix-
ture of Experts, Ensembling and Lexical Substitu-
tion. We combine all of these methods except the
Diverse Beam Search in our official submissions
through a consensus voting mechanism. Details
about the submissions can be found in Section 5.

2.1 N-best

The simplest method to generate multiple transla-
tions for a given sentence is to use N-best trans-
lations with a large beam size during decoding.
Larger beam size might lead to more translation
options with similar meanings. We experimented
with multiple sizes for N , and used the same value
for N-best and beam size.

2.2 MC Dropout

Gal and Ghahramani (2016) proposed the Monte
Carlo (MC) dropout method to estimate predictive
NMT model uncertainty. The method consists in
running several forward passes through the model
(i.e., at inference time), each applying dropout be-
fore every weight layer and collecting posterior
probabilities generated by the model with parame-
ters perturbed by dropout. The mean and variance
of the resulting distribution can then be used to
represent model uncertainty. Instead of using this
method for scoring translations, we use it as a way
to generate alternative MT hypotheses for a given
source sentence. Specifically, we run inference
with dropout M times and collect the resulting
translations. In our experiments, the dropout rate
is set to 0.1 and M = 10.

2.3 Diverse Beam Search

Vijayakumar et al. (2016) proposed the Diverse
Beam Search algorithm to improve the diversity of
beam hypotheses. The algorithm proceeds by di-
viding the beam budget into groups and enforcing
diversity between groups of beams. In our experi-
ments we use the implementation of this algorithm
in fairseq (Ott et al., 2019) with default param-
eters.

2.4 Mixture of Experts

Shen et al. (2019) introduced the Mixture of Ex-
perts (MoE) framework to capture the inherent un-
certainty of the MT task where the same input sen-

tence can have multiple correct translations. A
mixture model introduces a multinomial latent vari-
able to control generation and produce a diverse set
of MT hypotheses. In our experiment we use hard
mixture model with uniform prior and 5 mixture
components.

2.5 Ensembling

Training an ensemble of various MT models ini-
tialized with different random seeds is a common
strategy used to boost the output quality (Garmash
and Monz, 2016). Unlike the typical ensembling
method that combines prediction distributions from
different models by averaging, we use each sys-
tem in the ensemble to generate a separate set of
translation hypotheses, and take the set of dictinct
translations as the final output.

2.6 Lexical substitution

In the STAPLE dataset, we observed that many
of the paraphrases in translations are simple vari-
ants with word substitutions in the target language.
Therefore, we built a dictionary containing all lex-
ical substitutions from the STAPLE training data.
The substitutions are sorted according to two crite-
ria: 1) number of occurrences 2) substitution prob-
ability. The substitution probability is calculated as
follows:

P (sub) =
Count(sub(w1, w2))

Count(w1)
(1)

The top-5 lexical substitutions from frequency-
sorted and probability-sorted dictionaries are listed
in Table 2. We filtered the substitution dictionary
with a stopword list3 and a threshsold (which can be
either frequency count or substitution probability),
to avoid generating ungrammatical translations.

Frequency Probability
substitution count substitution prob
neste-nesse 5091 baixar->descarregar 1.0
irá-vai 4920 descarregar->baixar 1.0
vou-irei 4645 situa-se->fica 1.0
local-lugar 2989 achasse->encontrasse 1.0
bem-bastante 2694 localizasse->achasse 1.0

Table 2: Top-5 lexical substitutions in frequency-sorted
and probability-sorted dictionaries.

3http://snowball.tartarus.org/
algorithms/portuguese/stop.txt

http://snowball.tartarus.org/algorithms/portuguese/stop.txt
http://snowball.tartarus.org/algorithms/portuguese/stop.txt


2.7 Consensus voting

To integrate translations from different models, we
employed a consensus voting mechanism by count-
ing the number of systems that predicted each trans-
lation. A threshold Tcon is set, meaning that a
translation must be predicted by at least Tcon + 1
systems, otherwise it is removed. Considering the
lexical translation might generate rare but correct
translation, we assign the lexical-substituted trans-
lations a weight Wsub so that they can be seen as
generated by Wsub systems. The consensus method
guarantees a high precision by removing transla-
tions that are likely to be incorrect.

3 Experiments

3.1 Data

To build the NMT model, we used parallel corpora
for En-Pt from OPUS (Tiedemann, 2012) as out-of-
domain data, including ParaCrawl4, EUbookshop5,
Europarl6, Wikipedia7, QED8, and Tatoeba9. The
combination of these corpora contains 22.42 mil-
lion parallel sentence pairs. The STAPLE dataset,
which contains 4000 source sentences with 526,466
translations, is used as in-domain data for fine-
tuning.

Since in the STAPLE dataset a source sentence
have an average number of 131 reference transla-
tions, we constructed parallel data by duplicating
the source sentence to match the number of transla-
tions, as shown in Figure 1.
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Figure 1: Constructing parallel fine-tuning data from
the STAPLE dataset.

4http://opus.nlpl.eu/ParaCrawl-v5.php
5http://opus.nlpl.eu/EUbookshop-v2.php
6http://opus.nlpl.eu/Europarl-v8.php
7http://opus.nlpl.eu/Wikipedia-v1.0.

php
8http://opus.nlpl.eu/QED-v2.0a.php
9http://opus.nlpl.eu/Tatoeba-v20190709.

php

We also experimented with different data filter-
ing strategies on the STAPLE dataset by only keep-
ing the top-K translations with the highest weights
(we refer to this as tune-K). Statistics regarding the
corpus size after filtering are shown in Table 3.

Filtering Source Translations
tune-5 20,000 5.00
tune-10 40,000 10.00
tune-20 78,439 19.61
tune-all 526,466 131.62

Table 3: Size of parallel fine-tuning data after filtering
the STAPLE dataset. Source indicates the number of
source sentences and Translations indicates the aver-
age number of translations per source sentence

All sentences are tokenized with Moses (Koehn
et al., 2007), and then processed via Byte-Pair-
Encoding (BPE) (Sennrich et al., 2016). A shared
vocabulary of 40,000 subwords is constructed for
both English and Portuguese. The training data
was then cleaned by removing sentence pairs with
more than 250 subwords or with length ratio over
1.5, using the clean-corpus-n.perl10 script
in Moses.

3.2 Model and hyperparameters

We used the Transformer model (Vaswani et al.,
2017) as our baseline model. The model is
trained using fairseq toolkit (Ott et al., 2019)
with the default hyperparameter settings using
transformer_wmt_en_de architecture. The
model was trained on 8 GPUs with a batch size
of 4096 tokens on each GPU. We used mixed-
precision training to accelerate the training. The
model was pre-trained on OPUS data for 30 epochs
and then fine-tuned on STAPLE data. We set 5 as
the number of experts for training the MoE system.
For ensembling, we pretrained with 3 random seeds
and fine-tuned with 4 random seeds, resulting in 12
different MT systems.

3.3 Generation of Translations

When generating an integration of translations from
multiple systems, we follows the procedure as de-
scribed below:

1. Generate translations from N systems, result-
ing in N translation sets s1, s2, s3, ..., sN

10https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
training/clean-corpus-n.perl

http://opus.nlpl.eu/ParaCrawl-v5.php
http://opus.nlpl.eu/EUbookshop-v2.php
http://opus.nlpl.eu/Europarl-v8.php
http://opus.nlpl.eu/Wikipedia-v1.0.php
http://opus.nlpl.eu/Wikipedia-v1.0.php
http://opus.nlpl.eu/QED-v2.0a.php
http://opus.nlpl.eu/Tatoeba-v20190709.php
http://opus.nlpl.eu/Tatoeba-v20190709.php
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-corpus-n.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-corpus-n.perl
https://github.com/moses-smt/mosesdecoder/blob/master/scripts/training/clean-corpus-n.perl


2. Apply consensus voting to the N system trans-
lations with threshold Tcon, resulting in one
translation set sconsensus

3. Apply lexical substitution to sconsensus, re-
sulting in a separate translation set slexical

4. Apply consensus voting to the N system trans-
lations and the lexical substitution translation
s1, s2, s3, ..., sN , slexical with threshold Tcon

and weight Wsub, resulting in the final trans-
lation set slexical&consensus.

3.4 Evaluation
The shared task provides a blind dev set (blind-dev)
and a blind test set (blind-test) for evaluation. Since
the number of submissions is limited, we also take
a small random split from the STAPLE training set
for dev (heldout-dev) and test (heldout-test) sets
with 500 source sentences.

The translations are evaluated at sentence-level
as a classification problem where true positives
(TP) occur when the system produces one of the
translations in the given set of references, false pos-
itives (FP) when a translation out of this set is pro-
duced, and false negatives (FN) when translations
in this set are missed by the system. The official
evaluation metric is a weighted macro F1-score av-
eraging over all source sentences. The weighted
F1 score is calculated with weighted recall and
unweighted precision:

recall =
∑
t∈TP

weight(t)

precision =
TP

TP + FP

weightedF1 =
2 ∗ precision ∗ recall
precision+ recall

weightedmacroF1 =
∑
s∈S

weightedF1(s)

|S|

4 Results

N-best We present the F1 score with respect to
n-best size (from 1 to 20) in Figure 2. The models
fine-tuned with different filtered data are evaluated
on our heldout test set. As shown in Figure 2,
the pre-trained model (tune-0) shows a poorer
performance than the other fine-tuned models.
The tune-1 model shows a good performance
when the N-best size is small, but experiences
a degradation when N-best increases. Models

fine-tuned with 5, 10, and 20 reference translations
show similar performances with F1 score around
0.49. However, the optimal n-best size is closely
related to the number of translations used for
fine-tuning, with N-best=3,10,12,18 for model
tuned with 1, 5, 10 and 20 references respectively.
The models fine-tuned with all translations
in the STAPLE dataset show a growing trend
in F1 score as n-best size increases, but the
overall F1 score is still much lower than for the
three fine-tuned models. We found that the upper
bound for tune-all model is around 0.415 F1 score.

Figure 2: F1 score w.r.t N-best size for models fine-
tuned with different number of reference translations.

MC dropout Table 4 shows a comparison
on the heldout-test set between the N-best and
N-best with MC dropout. It can be seen that the
N-best12 achieves a higher recall than the N-best5,
which leads to an increase of 0.038 in F1 score.
When decoding with dropout, the N-best5 could
match the performance of N-best12. Although
noticing that MC Dropout could improve the
performance for small N-best size, we found that
when the N-best size gets larger the weighted F1
score does not improve further.

Precision Recall F1
N-best12 0.717 0.452 0.494
N-best5 0.839 0.360 0.456
+dropout(H=10) 0.725 0.441 0.497

Table 4: A comparison between N-best and N-best with
MC Dropout.

Diverse beam search When evaluating di-
verse beam search on the heldout-test set, we found
that the model performance lags behind the N-best



baseline to a large extent, with F1 score of only
0.292. We looked into some translation examples
and noticed that although diverse beam search can
lead to more diversity in translations, it sometimes
adds an extra full stop at the end of translations.
Considering that the evaluation is conducted at
sentence-level, such a minor modification can
lead to a large false positive number. In the final
submission, we left this method out.

Mixture of experts Regarding the MoE method,
we found that different experts show inconsistent
performance. As shown in Table 5, with the
same N-best size, experts 2, 3, and 5 show a
good performance, achieving an F1 score over
0.4. However, the other two experts, especially
expert 4, exhibit poorer performance. This might
be caused by insufficient training for the experts
that perform poorly. In the final submission, we
removed translations from experts 1 and 4 to avoid
incorrect predictions.

Expert Precision Recall F1
1 0.425 0.320 0.312
2 0.708 0.426 0.475
3 0.647 0.374 0.415
4 0.276 0.217 0.193
5 0.640 0.404 0.437

Table 5: An illustration of the inconsistent performance
from different experts in MoE (with N-best=12).

Ensemble & Consensus In Table 6, we present
our ensembling submission and consensus
submission (with threshold Tcon set to 1) on the
blind-dev set. Both ensembling and consensus
voting improve over the N-best by increasing the
recall and reducing the precision. However, since
consensus voting removed translations with fewer
votes from other systems, the precision score is
higher than that of ensembling while the recall is
similar. This leads to a higher F1 score with the
consensus submission.

Precision Recall F1
N-best 0.714 0.483 0.521
+Ensemble 0.617 0.549 0.523
+Consensus(Tcon = 1) 0.652 0.534 0.530

Table 6: A comparison between ensembling and con-
sensus voting.

Ensembling can be seen as a special case of

consensus voting, with the threshold Tcon being
zero. Ensembling maximizes the recall by taking
translations from all the systems but sacrifices the
precision. Increasing the value of the threshold
Tcon would compensate for the precision loss
while maintaining the gain in recall.

Lexical substitution Table 7 shows the sub-
missions on the blind-dev set after applying lexical
substitution to a consensus output combining
ensembled N-best, MC dropout, and MoE sys-
tems.We first generated a set of translations with
all lexical substitutions, using the translations from
an N-best system. The translations with lexical
substitution achieve an F1 score of 0.127, which
shows potential benefits of this method. However,
as shown in Table 7, simply adding the substituted
translations will harm performance, and this will
happen for both frequency-based sorting and
probability-based sorting. This is due to the fact
that the translations after substitution are likely to
be ungrammatical since the substituted word does
not fit in the context. To alleviate this, we added
the substituted translations to the consensus pool
for higher precision. This only improves over the
consensus system without lexical substitution by
+0.002 F1 score.

F1
Lexical only 0.127
Consensus(Tcon = 5) 0.542
+lexical (freq > 1000) 0.512
+lexical (prob > 0.85) 0.532
+lexical (prob > 0.85, consensus) 0.544

Table 7: An illustraction of the benefit and harm
from lexical substitution (evaluated on blind-dev set).
The Consensus system combines the ensembled N-bset,
MC-Dropout, and MoE systems.

In the experiment combining theses methods, we
found that the N-best translations contributes the
most score among all these methods. While an
N-best system could achieve a weighted F1 score
of nearly 0.5, other methods such as MC-Dropout,
Ensembling and Consensus would only result in an
extra improvement of less than 0.05 weighted F1
score. In our experiments, Diverse Beam Search
and Mixture of Experts systems didn’t contribute
much.



5 Official submissions

Our official submissions combine translations from
12 tune-10 N-best systems (12 random seeds, fine-
tuned with top-10 references, N = 12), 12 tune-20
N-best systems (12 random seeds, finetuned with
top-20 references, N = 20), 2 MC Dropout sys-
tems (n = 3, M = 50; n = 5, M = 10 ), 3
experts from the MoE system, and lexical substi-
tution (with a probability threshold of 0.7). The
consensus voting threshold Tcon is set to be 10, and
the weight Wsub for lexical substitution is 9. Re-
sults for our three official submissions to the blind
test set are shown in Table 8.

Precision Recall F1
Consensus(Tcon=10)+lexical 0.741 0.516 0.551
Consensus(Tcon=10) 0.757 0.501 0.545
Consensus(Tcon=1)+lexical 0.579 0.580 0.521

Table 8: Our three official submissions to STAPLE
blind-test set.

The best submission, which achieves the best
F1 score of 0.5510, applies both consensus voting
and lexical substitution. As shown in the second
submission, removing lexical substitution would re-
duce the F1 score by 0.006, although the precision
is improved marginally. In the third submission,
we set the consensus voting threshold T to be 1
to see the upper bound for recall. The recall in-
creases from 0.516 to 0.580 while the precision
drops significantly from 0.741 to 0.579.

Our best submission achieves the second po-
sition in the English-Portuguese track, with only
0.0006 weighted F1 score behind the winning sub-
mission. The official result on STAPLE test set is
shown in Table 9.

Participant Weighted F1
jbrem 0.5516
Ours 0.5510
rakchada 0.5440
aws baseline 0.2130
fairseq baseline 0.1357

Table 9: Official results on STAPLE test set in English-
Portuguese translation (top-3 submissions and base-
lines).

6 Conclusions

This paper describes our submissions to the STA-
PLE shared task for English-Portuguese translation.

We showed that simply generating N-best trans-
lations already achieves a considerable degree of
diversity and quality. We experimented with var-
ious methods to improve the diversity in the MT
output, including N-best translation, MC Dropout,
Diverse Beam Search, Mixture of Experts, Ensem-
bling, Consensus Voting, and Lexical Substitution.
We showed the benefits and drawbacks of these
methods in generating diverse, high quality trans-
lations. Our systems combining these methods
further improve over the N-best translation and
achieve 0.5510 weighted F1 score on STAPLE
blind test set, which is only 0.0006 behind the win-
ning submission.
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A Appendices

A.1 Checkpoiting vs tune-K
Table 10 presents the best finetuning checkpoint for
models finetuned with different number of refer-
ences. Models trained with more references might
converge faster, and when the tuning number is
larger than 40, only 1 epoch is used for finetuning.

Finetuning Best checkpoint
tune-1 10
tune-5 10
tune-10 6
tune-20 4
tune-40 1
tune-all 1

Table 10: The best finetuning checkpoint vs the number
of finetuning reference translations

A.2 Submission on blind-dev set
To provide a comprehensive understanding of the
different methods, we selectively list our submis-
sions to the blind-dev set in Table 11.

http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need.pdf


ID System Precision Recall F1 Hyperparameters
1 nbest 0.714 0.484 0.521 N=12, tune-10
2 ensemble 0.617 0.549 0.523 N=12, tune-10, 3 pretrain * 4 finetune seeds
3 nbest 0.645 0.522 0.518 N=18, tune-10
4 nbest 0.635 0.522 0.511 N=20, tune-20
5 MoE 0.368 0.527 0.385 N=12, tune-10, experts=5
6 MC Dropout 0.660 0.496 0.514 N=3, tune-10, M=50
7 MC Dropout 0.672 0.485 0.511 N=5, tune-10, M=10
8 Consensus 0.653 0.534 0.530 12*nbest systems(tune-10), Tcon = 1

9 Consensus 0.641 0.541 0.529 12*nbest systems(tune-10), 2 MC Dropout systems(row 6 and 7), 5 experts, Tcon = 2

10 Consensus 0.677 0.527 0.536 same as Row 9, Tcon = 3

11 Lexical 0.443 0.538 0.428 same as Row 10, add lexical substitutions (frequency > 4000)
12 Lexical 0.612 0.534 0.509 same as Row 11, frequency > 5000
13 Consensus 0.633 0.565 0.538 24*nbest systems(tune-10, tune-20), 2 MC Dropout systems, 5 experts, Tcon = 4

14 Consensus 0.652 0.558 0.542 same as Row 13, Tcon = 5

15 Consensus 0.655 0.557 0.543 24*nbest systems(tune-10, tune-20), 2 MC Dropout systems, 3 experts, Tcon = 5

16 Lexical 0.607 0.578 0.533 same as Row 15, add lexical substitution(probability > 0.85)
17 Lexical+Consensus 0.651 0.561 0.544 same as Row 15, add lexical substitution to consensus voting (Wsub = 3)
18 Lexical+Consensus 0.667 0.553 0.546 same as Row 17, Tcon = 6

19 Lexical+Consensus 0.682 0.546 0.548 same as Row 17, Tcon = 7

20 Lexical+Consensus 0.697 0.540 0.550 same as Row 17, Tcon = 8

21 Consensus 0.710 0.530 0.550 same as Row 15, Tcon = 9

22 Consensus 0.721 0.526 0.551 same as Row 15, Tcon = 10

23 Lexical only 0.243 0.114 0.127
24 Lexical+Consensus 0.720 0.526 0.550 same as Row 22, add lexical substitutions to consensus voting (frequency > 1000, Wsub = 3)
25 Consensus 0.564 0.582 0.506 36*nbest systems(tune-10, tune-20, tune-40), 2 MC Dropout systems, 3 experts, Tcon = 10

26 Consensus 0.618 0.565 0.526 same as Row 25, Tcon = 11

27 Lexical+Consensus 0.722 0.527 0.552 same as Row 22, add lexical substitutions to consensus voting (probability > 0.99, Wsub = 3)
28 Lexical+Consensus 0.720 0.529 0.552 same as Row 27, Wsub = 7

29 Lexical+Consensus 0.718 0.531 0.553 same as Row 27, Wsub = 9

30 Lexical+Consensus 0.715 0.535 0.554 same as Row 27, (probability > 0.90, Wsub = 9)
31 Lexical+Consensus 0.710 0.539 0.555 same as Row 27, (probability > 0.70, Wsub = 9)

Table 11: Submissions on the blind-dev set.


