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Abstract

This paper describes POSTECH’s submission
to the 2020 Duolingo Shared Task on Simul-
taneous Translation And Paraphrase for Lan-
gauge Education (STAPLE) for the English-
Korean language pair. In this paper, we pro-
pose a transfer learning based simultaneous
translation model by extending BART. We pre-
trained BART with Korean Wikipedia and a
Korean news dataset, and fine-tuned it with an
additional web-crawled parallel corpus and the
2020 Duolingo official training dataset. In our
experiments on the 2020 Duolingo test dataset,
our submission achieves 0.312 in weighted
macro F1 score, and ranks second among the
submitted En-Ko systems.

1 Introduction

Simultaneous Translation And Paraphrase for Lan-
guage Education (STAPLE) is the task of automati-
cally producing multiple translations from a single
source sentence (Mayhew et al., 2020). Because
STAPLE can be regarded as a mixture of the ma-
chine translation (MT) and paraphrasing problem,
MT and paraphrasing techniques play an impor-
tant role in this task. Unlike in a typical MT task,
systems are demanded to generate high-coverage
sets on a sentence-level, as opposed to word-level.
Subsequently, systems require a deeper linguistic
understanding of the target language to generate
accurate target sentences.

Recent NLP studies have alleviated this problem
by transfer learning (Ventura and Warnick, 2007)
from pre-trained language models. Radford et al.
(2018) proposed a generative pre-trained language
model (GPT), which trains a Transformer decoder
with large-scale monolingual data, to achieve sig-
nificantly improved performance in nine out of the
twelve datasets. Despite these improvements, GPT
shows a limited ability to model bidirectional con-
text due to using the classical generative model-

ing approach. On the other hand, Devlin et al.
(2018) proposed bidirectional encoder representa-
tions from Transformers (BERT), trained for the
reconstruction of natural language from sentences
containing masked tokens, in order to obtain deeper
representations for natural language. By training on
an enormous amount of training data, they achieved
state-of-the-art results on eleven NLP tasks. To
take advantage of both pre-trained generative mod-
els and pre-trained bidirectional encoders, Lewis
et al. (2019) introduced a denoising autoencoder for
pre-training sequence-to-sequence models called
BART. BART aims to learn linguistic knowledge in
the process of first corrupting the text using various
noise functions and then restoring it, and showed
state-of-the-art performance in various tasks.

Given this background, we expected that using a
transfer-learning-based approach could resolve two
difficulties of the En-Ko track of STAPLE: data
insufficiency and multiple sentence generation. Un-
like recent MT models which used over 4.5 million
sentence pair for training data, the STAPLE offi-
cial dataset includes only 2500 En-Ko source sen-
tences. With such small data, we predicted that re-
cent NMT models would not be able to learn trans-
lation knowledge effectively. Also, we speculated
that paraphrasing requires a deep understanding
of the language. Based on this prediction, a well-
trained language model and a generative model for
target language were needed to achieve this task’s
objectives.

With these considerations, we concluded that
BART, a sequence-to-sequence generative model
pre-trained on a large amount of data, is most
suitable for STAPLE and thus propose a transfer-
learning-based simultaneous translation model by
extending BART. Our model added a randomly ini-
tialized source-side encoder in place of the embed-
ding layer of BART pre-trained by Korean mono-
lingual data and predicts translation weights with



Figure 1: The overall architecture of the proposed
model. The input vectors of feed-forward network are
the sum of the pre-trained decoder’s hidden vectors.

an additional feed-forward network using hidden
vectors generated by the pre-trained decoder. The
remainder of the paper is organized as follows: Sec-
tion 2 describes our proposed method. Section 3
summarizes the experimental procedure and results,
and Section 4 gives the conclusion.

2 Method

We adopt BART to the STAPLE problem, which
takes source sentence to generate multiple target
sentences. Our model consists of a pre-trained
autoencoder with the source-side encoder that pro-
posed in Lewis et al. (2019) and a feed-forward
network to predict translation weights (Figure 1).
In the following subsections, we describe our meth-
ods in detail.

2.1 Pre-trained autoencoder (BART)

We used BART as our pre-trained autoencoder
structure. As was with BART, our autoencoder
structure learns linguistic information of the target
language by denoising various types of document
corruptions. Among the five document corruption
types proposed by BART, we applied Text Infilling
and Sentence Permutation because they yielded the
best results on Lewis et al. (2019).

2.2 Source-side Encoder

Pre-trained BART is a monolingual model, so the
proposed model needs an additional encoder to
function as translation model. After pre-training
BART, we removed the embedding layer of the pre-
trained encoder and added a randomly-initialized
encoder instead (Lewis et al., 2019). In order to pre-
vent corruption from the high loss in the randomly-

Dataset Sentence Word

Monolingual 31,654,593 447,754,804
Additional parallel 2,035,566 29,964,677
Official (1 to 1) 700,410 2,915,939

Table 1: Dataset statistics - number of target sentence
and word.

initialized encoder during initial training, we freeze
all pre-trained BART weights during the first fine-
tuning step except for the self-attention input pro-
jection matrix of BART’s first encoder layer. In the
second step, we train all model parameters.

2.3 Feed-forward network for translation
weight training

We added a feed-forward network to predict a trans-
lation weight on each generated sentence. The
sum of hidden vectors which generated on the de-
coder is passed as the input of the feed-forward
network. The output of the feed-forward network
passed through a sigmoid layer becomes the final
translation weight. During the generation step, the
sentences with the high weights are selected.

3 Experiments

3.1 Dataset
Pre-training. For pre-training, we use text
crawled from the Korean Wikipedia (5.8M words)
and Korean online news sites (447M words). When
crawling, we extracted only text passages and ig-
nored headers, lists, and tables. To reduce training
time, we filtered out any samples that exceed 100
tokens.

Fine-tuning. For fine-tuning, we used the STA-
PLE official training data (Duolingo, 2020) (700K
sentences), setting aside 100 sentences each for
the development set and test set. In addition, we
adopted the web crawling parallel corpus (2M
sentences) as additional training and development
data for the source-side encoder. As with the pre-
training corpus, we filtered out any training or de-
velopment samples longer than 100 tokens.

3.2 Training Details
Settings. We modified the Fairseq (Ott et al.,
2019) implementation of BART to build our model.
Most hyperparameters of BART pre-training such
as dropout ratio, hidden size, and etc. were copied
from the base model described in Lewis et al.



Decoding Option Weighted Macro F1 ↑ Weighted Recall ↑ Precision ↑
Beam Size Diverse Nbest (weight)

Beam search

50 – 50 0.3192 0.3092 0.5202
75 – 75 0.3280 0.3651 0.4628
100 – 100 0.3234 0.4008 0.4214
140 – 140 0.3108 0.4394 0.3680
500 – 500 0.2218 0.5817 0.1865

Diverse
beam search

100 5 100 0.1673 0.2069 0.2212
100 10 100 0.1164 0.1474 0.1601

Beam search
with weight

75 – 50 0.2695 0.2546 0.4630
75 – 65 0.3064 0.3197 0.4615
75 – 70 0.3163 0.3410 0.4596

Table 2: Results of training variants – each separated section corresponds to a different generation strategy
(Beam search, Diverse beam search and Beam search with weight). Diverse is the number of group for diverse
beam search and Nbest (weight) is the number of sentences selected by highest translation weight. The bold values
indicate the best result in the metrics for each architecture.

(2019). For the document corruption scheme, we
used the pre-training options of Lewis et al. (2019):
Text Infilling and Sentence Shuffling. We set warm-
up learning steps to 10K out of 250K total steps.
For data preprocessing, we applied the sentence-
piece (Kudo and Richardson, 2018) implementa-
tion of byte-pair encoding (Sennrich et al., 2016)
with a 32k vocabulary on each language.

Pre-training. We trained target-side BART us-
ing Text Infilling and Sentence Shuffling as de-
scribed in §2.1. We replaced 30% of tokens with
single [MASK] symbols with span length distribu-
tion (λ = 3) on Text Infilling.

Fine-tuning. We divided fine-tuning step into
four steps.

1. Pre-train source-side encoder After pre-
training, we detached the embedding layer
of BART encoder and attached a randomly
initialized encoder as described in §2.2. We
used only our web crawling parallel corpus for
this step. During this step, we freeze the pre-
trained model except the first encoder layer’s
projection weights to prevent the pre-trained
weights being affected by the high loss while
the encoder learns the source-side representa-
tion.

2. Fine-tuning on MT After pre-training the
source-side encoder, we trained entire model
on the same training data with a smaller learn-
ing rate. Because the size of the parallel data
used for fine-tuning is much smaller than that

of monolingual data used for pre-training, we
expected pre-trained BART to generate the
correct sentences even if the source-side en-
coder produced an incorrect expression.

3. Fine-tuning on paraphrasing After training
on an additional parallel corpus, we trained
the entire model on the official parallel corpus
to reach the paraphrasing goal.

4. Weight training After learning all sentence
representations, we trained a feed-forward net-
work for translation weight prediction on the
official target language weights. In order to
train translation weights without corrupting
the sentence generation model, we freeze all
parts of the model excluding the feed forward
network.

Experiment variations. We conduct multiple
experiments on test set divided from official train-
ing set to determine the best generation strategy.

• Beam search with different beam size. We
selected all generated sentences.

• Diverse beam search with different beam
size and group size. We used the implementa-
tion of Vijayakumar et al. (2016).

• Beam search w/ weight with same beam size
but different size of sentences selected by
highest translation weight.



Systems Weighted Macro F1 ↑ Weighted Recall ↑ Precision ↑

jbrem 0.4035 0.4518 0.4795
jspak3 (ours) 0.3116 0.3342 0.4701
sweagraw 0.2553 0.3168 0.3216
jindra.helcl 0.2058 0.1935 0.3894

STAPLE fairseq baseline 0.0486 0.0315 0.2204
STAPLE aws baseline 0.0412 0.0226 0.6360

Table 3: Submission results – the official results of 2020 Duolingo shared task in En-Ko language pair. The bold
values indicate the best result in the metrics for the each architecture.

3.3 Results

We trained the model as described in §3.2 using var-
ious generation strategies. For evaluation, we used
weighted macro F1 scores on our test set extracted
from the 2020 Duolingo official dataset. Table 2
shows the scores of each generation strategy. In
the case of beam size, results showed the highest
weighted macro F1 score when the beam size was
75. We speculate this to be because of the trade-off
between weighted recall and precision. Using di-
verse beam search with beam size 100 and beam
search with translation weight showed ineffective
results. We initially expected to attain a higher pre-
cision with similar weighted recall if the translation
weights were predicted accurately, but it seems our
feed-forward network was not able to learn the dis-
tribution of translation weights properly. Also, we
had expected diverse beam decoding to help gen-
erate more diverse sentences, but it had an adverse
effect on overall performance.

Submission results. The submission results on
the official test set are reported in Table 3. We
selected the decoding option obtained by applying
beam search with beam size 75, Nbest 75 which
showed the highest weighted macro F1 score in
Table 2 as our final submission. Our submission
achieves an improvement of +0.263 in weighted
macro F1 score compared to the baseline. As a
result, our system ranks second out of the four
systems submitted this year.

4 Conclusion

In this paper, we present POSTECH’s submissions
to the 2020 Duolingo shared task. We propose
a transfer-learning based simultaneous translation
model by extending BART. The proposed model is
first pre-trained by reconstructing large corrupted
text using text infilling and sentence shuffling, and

then fine-tuned with an additional parallel corpus
and the official training dataset with a newly added
randomly initialized encoder in place of the em-
bedding layer. It has an additional feed-forward
network to predict translation weight trained on the
official dataset. Finally, our model outperforms the
baseline by a large margin and ranks second out of
the submitted systems.
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